

Novel water treatment technology by using TiO₂ photocatalysts

Panasonic Corporation Hirofumi Fujita and Daisuke Ino

Groundwater

About us

Panasonic Corporation

Head Office Location	Kadoma, Osaka, Japan
President	Kazuhiro Tsuga
Foundation	March, 1918
Net Sales	7,715.0 billion yen (=62.9 billon USD)
Number of Employees	254,084

R&D center in Japan and India

		* TDS : Technology & Design Section
TDS	R&D Business Development	Advanced Research Division
		Production Engineering Division
Companies	R&D/ Product Development/ Design	Appliances Company
		Eco Solutions Company
		AVC Networks Company
		Automotive & Industrial Systems Company

Photocatalytic water purification

✓ Generation of highly reactive radicals

- ✓ Free from residual chemicals
- ✓ less energy consumption

List of pollutants for photocatalytic reaction

Pollutant		Redox	Chemical reaction	Post treatment
Metals	As(III)	Oxidation	$As(III) \rightarrow As(V)$	Adsorption
Disinfection byproducts DBP	Bromate	Reduction	$2BrO_3^- + e^-$ $\rightarrow Br^- + 3O_2$	
Persistent organic matters	estradiol, diclofenac, atrazine, etc.	Oxidation	Parents molecule \rightarrow fragments	
Odor smells	geosmin, 2-MIB, etc.	Oxidation	Parents molecule \rightarrow fragments	

Oxidation of pharmaceuticals

Reduction of bromate

Comparison table

Technology		Ozonation		Photocatalysis		
Methodology		O ₃	O ₃ /UV	Fixed bed	Slurry fluidized	
Oxidation species Main Sub		O ₃ ,	•ОН •ОН		ЭН	
		Sub	•HO ₂ , •OH	0 ₃	• 0 ₂ -	
Oxi	Unsaturated hydrocarbon		Effective	Effective		
	Saturated hydrocarbon		Non-effective	Effective		
	PPCPs, POM		Non-effective	Effective		
	As(III)		Non-effective	Effective		
Red	Broma	ate	N/A		Effective	
	Cr(V	I)	N/A		Effective	
Reaction Byproducts		BrO ₃ ⁻		None		
Electric energy (kWh/m ³)		0.1	0.2 ~ 1.0	200 ~ 300	0.1 ~ 0.2	

Groundwater treatment

Advantages of photocatalytic treatment

<u>1. High reactivity;</u>

Bio-non degradable organic matters such as saturated hydrocarbons, pharmaceuticals and pesticides can be decomposed.

2. Chemical free;

Tri halogenated methane and bromate can not be observed in the treated water.

3. Less energy consumption;

Electric energy consumption of this technique reached down to 0.1 kWh/m³.

Requirements for this technology

Removal of turbidity and TDS components prior to this technique might be required for the effective and stable operations.

Hotel tap water treatment

Advantages of photocatalytic treatment

<u>1. High reactivity;</u>

Oder smell chemicals can be completely decomposed.

2. Chemical free;

Any residual chemicals can not be observed in the treated water.

Requirements for this technology

None

Rain water treatment

Advantages of photocatalytic treatment

<u>1. High reactivity;</u>

Bacteria and animal wastes can be disinfected and decomposed.

2. Chemical free;

Any residual chemicals can not be observed in the treated water.

Requirements for this technology

Removal of turbidity prior to this technique might be required for the effective and stable operations

Panasonic Lab. In Bangalore

Testing of Your sample water in our Lab

Photocatatlytic prototype apparatus

Lab equipment:

- Photocatalytic prototype apparatus
- Analyzer: HPLC, TOC analyzer, UV/VIS spectroscopy

Panasonic Lab in Indian Institute of Science (Bangalore)

Example of water treatment data