Waste Water Treatment Technologies and Practices in Indian Pulp and Paper Industries

Dr. B. P. Thapliyal
Director

Central Pulp & Paper Research Institute
Saharanpur -247001 (U.P.) INDIA
Email: bipin_thapliyal@yahoo.com
www.cppri.org.in
Indian Paper Industry – A Brief

<table>
<thead>
<tr>
<th>Number of Mills</th>
<th>850 +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure (operational mills ~ 600 mills)</td>
<td></td>
</tr>
<tr>
<td>Small Scale (< 50 tpd)</td>
<td>~ 250</td>
</tr>
<tr>
<td>Medium Scale (50-100 tpd)</td>
<td>~ 150</td>
</tr>
<tr>
<td>Large Scale (Above 100 -1200 tpd)</td>
<td>~ 200</td>
</tr>
<tr>
<td>Total Installed Capacity (MMT)</td>
<td>25.00</td>
</tr>
<tr>
<td>Operating Installed Capacity (MMT)</td>
<td>21.50</td>
</tr>
<tr>
<td>Production of paper, board & newsprint (MTPA)</td>
<td>17.33</td>
</tr>
<tr>
<td>Consumption of paper, board & newsprint (MTPA)</td>
<td>19.35</td>
</tr>
<tr>
<td>Per capita consumption (KG)</td>
<td>13.2</td>
</tr>
<tr>
<td>Export (MMT)</td>
<td></td>
</tr>
<tr>
<td>Paper & Paper Board</td>
<td>0.97</td>
</tr>
<tr>
<td>Newsprint</td>
<td>-</td>
</tr>
<tr>
<td>Import (MMT)</td>
<td></td>
</tr>
<tr>
<td>Paper & Paper Board</td>
<td>1.48</td>
</tr>
<tr>
<td>Newsprint</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Ref: CPPRI Survey
Indian Paper Industry

Diverse Raw materials
- 15+ species of Wood
- Non-Woods: Bagasse, Rice Straw, Wheat Straw, Grasses/Reeds
- Waste Papers: White, Brown and Mixed
- Market Pulps

Diverse Processes
- Mechanical Pulping
- Chemical Pulping – Kraft Process generally for wood pulping
- Chemical Pulping – Soda Process generally for Agro pulping
- Recycled Fibre (RCF) Process – with or without De-Inking

Diverse Products
- Packaging Papers & Coated/Uncoated Paperboards
- Coated/Uncoated Printing & Writing Papers
- Newsprint & Magazine Papers
- Tissues & Hygiene Papers
- Specialty Papers
Technological Issues

- Mostly Second Hand
- Not Designed for Processing Mixed Raw material
- Non availability of sufficient raw material
- High Capital Investment due to imported origin

Obsolescence in technology

Limited scale of operation

Restricts Adoption of State of Art Technology

Becomes uncompetitive in global market

Environmental Impacts

- High effluent load
- High Colour in effluent
- High level of COD, BOD & AOX
- Black liquor management (agro based)
- High resource consumption
- High cost of basic inputs
Technological Issues

- Low cost of water
- Lack of optimum performance of pulp washers.
- Carrying out of most operations at high dilution.
- Lack of water audit / water balance / assessment of optimum water requirement
- Lack of optimization of washer requirement on decker, pulp washers & paper m/c
- Lack of fiber recovery units or low performance of existing fiber recovery units
- Lack of adequate ETP facilities
- Mental block in reuse / recycle of treated effluent / back water
- Lack of awareness, trained manpower and monitoring facilities
ETP in Indian Paper Industry

Effluent Treatment Process Employed in Indian Paper Industry

Aerobic
For Treatment of Combined Effluent

Anaerobic
For Pretreatment of High Strength Agro residues Raw Material Washings and Pre-hydrolysis Liquor

Tertiary
Polishing the Quality of Treated Effluent and meet Stringent Norms in Ganga River Basin
- Chemical Treatment
- Physical treatment: Sand Filter, Dual Media Filter, Activated carbon Filter
Major Regulatory Agencies in India

National Level: Central Pollution Control Board;
State level: State Pollution Control Boards

<table>
<thead>
<tr>
<th>Parameter</th>
<th>General Standards</th>
<th>CPCB – Pulp & Paper Mills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Small Scale</td>
</tr>
<tr>
<td>Volume, m³/t</td>
<td>-</td>
<td>Agro based</td>
</tr>
<tr>
<td></td>
<td></td>
<td>:200 (150)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waste Paper:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 (inland discharge)</td>
</tr>
<tr>
<td>pH</td>
<td>5.5-9.0</td>
<td>5.5 –9.0</td>
</tr>
<tr>
<td>BOD₅ at 20°C mg/l</td>
<td>30 (Inland surface water)</td>
<td>30 (inland discharge)</td>
</tr>
<tr>
<td></td>
<td>350 (Public Sewer on land discharge)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 (Land for irrigation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 (Marine / Coastal areas)</td>
<td></td>
</tr>
<tr>
<td>COD, mg/l</td>
<td>250 (inland surface water)</td>
<td>Not specified</td>
</tr>
<tr>
<td></td>
<td>-(Public Sewer on land discharge)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-(Land for irrigation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 (Marine / Coastal areas)</td>
<td></td>
</tr>
<tr>
<td>SS, mg/l</td>
<td>100 (inland surface water)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>600 (Public Sewer on land discharge)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 (Land for irrigation)</td>
<td></td>
</tr>
<tr>
<td>TOCl, kg/t paper</td>
<td>-</td>
<td>Not specified</td>
</tr>
<tr>
<td>AOX</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>SAR</td>
<td>-</td>
<td>26</td>
</tr>
</tbody>
</table>
Activated Sludge Process:

- **Primary Treatment**: Influent → Primary Clarifier
- **Secondary Treatment**: Aeration Tank → Secondary Clarifier → Final discharge

Limitations of Biological Treatment Process:
- Biological system i.e. ASP is effective for removal of degradable compounds contributing BOD.
- Around 85-90% of the total COD in finally treated effluent is mainly due to bio refractory compounds like degraded lignin, extractives etc.
- Not able to reduce the colour and TDS of the effluent

[Central Pulp & Paper Research Institute](http://www.cppri.org.in/)
Biological Nature of Oxygen Consuming Pollutants

- **Easily Biodegradable**
 - (Free sugar, carbohydrates, sugars, acids etc.)

- **Slowly Biodegradable**
 - (fibers, fines, polysaccharides etc)

- **Resistant**
 - (degraded lignin related compounds)
Need for Tertiary Treatment Options

- To meet the water consumption and discharge norms
- Primary & Secondary Treatment Measures – effective for pollution reduction but not effective to treat waste water for reuse into the process
- Need to adopt tertiary treatment options to treat waste water up to a level making it suitable for reuse into the process
- Selection of tertiary treatment option depend upon the end application of treated effluent
Stringent Environmental Norms

- Specifically for Pulp & Paper Mills in River Ganga Basin
- New Environmental Norms on same lines likely to be introduced soon on National Level

<table>
<thead>
<tr>
<th>Mill Category</th>
<th>Fresh Water Consumption m³/t paper</th>
<th>Waste Water Discharge m³/t paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (Wood Bld.)</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>A2 (Wood unbld)</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>B1 (Agro Bld)</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>B2 (Agro Kraft)</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>C1 (RCF Bld)</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>C2 (RCF Kraft)</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>D (Splty Paper)</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>
Stringent Environmental Norms

- Specifically for Pulp & Paper Mills in River Ganga Basin
- New Environmental Norms on same lines likely to be introduced soon on National Level

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Discharge norms for Integrated Pulp & Paper Mills Producing Chemical Pulp</th>
<th>Discharge norms for RCF based Mills</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.5-8.5</td>
<td>6.5-8.5</td>
</tr>
<tr>
<td>TSS, mg/l</td>
<td>< 30</td>
<td>< 30</td>
</tr>
<tr>
<td>TDS, mg/l</td>
<td>< 1800</td>
<td>< 1600</td>
</tr>
<tr>
<td>COD, mg/l</td>
<td>< 200</td>
<td>< 150</td>
</tr>
<tr>
<td>BOD, mg/l</td>
<td>< 20</td>
<td>< 20</td>
</tr>
<tr>
<td>Colour, PCU</td>
<td>< 250</td>
<td>< 150</td>
</tr>
<tr>
<td>AOX, mg/l</td>
<td>< 8</td>
<td>-</td>
</tr>
<tr>
<td>SAR</td>
<td>< 10</td>
<td>< 8</td>
</tr>
</tbody>
</table>
Stringent Environmental Norms

Resource Conservation
- Less availability of surface water
- Declining level of ground water

Need for Water Conservation / Water Circuit Closure

Regulatory Pressure
- Environmental Compliance
- Disposal Problem - Less availability of river water for dilution
- Improved quality of treated effluent

Cost Economics
- High Water Cess
- High raw water and waste water treatment cost
- Energy Conservation

http://www.cppri.org.in/
Tertiary Treatment (EOP)

Carbon Filter / Dual Media Filter / Chemical Treatment etc for polishing Effluent Quality / partial reuse / recycle of waste water to meet the discharge norms

OR

Carbon Filter / Dual Media Filter / Chemical Treatment etc + Ultrafiltration + Nano Filtration + Reverse Osmosis for recovery of process / industrial grade water

Primary Treatment

Primary Clarifier

Secondary Treatment

Aeration Tank

Secondary Clarifier

Influent

Sludge Dewatering

Sludge Return

Sludge Wasting

Waste Water
Fiber Recovery Units for Back water Reuse & Recycling & Reducing Pollution Load to ETP

DAF Units Spray Filter Sedicell
Filters as Tertiary Treatment Options for Reuse & Recycling of Treated Effluent

- Activated Carbon Filter
- Micron Filter
- Pressure Sand Filter
- Dual Media Filter
- Multi Media Filter

Central Pulp & Paper Research Institute

http://www.cppri.org.in/
Real Time On line Monitoring of Treated Effluent Quality - Mandatory for Indian Paper Industry

All the monitors are linked to Central Server of Regulatory Bodies
Anaerobic Bioreactor Configuration in Indian Paper Industry

Benefits of Bio-methanation:

- Reduce pollution load to subsequent ETP
- Co-generation of energy as biogas rich in methane
- Recovery of Biogas reduces GHG emission responsible for global warming
- Benefits of Carbon Credits
Recent Trends in Indian Pulp & Paper Mills for Improved Environmental Management

- Installation of Borewell Flow meter/ Electronic Flow meter
- Setting up of ETP Lab & Trained manpower
- Installation of Paper Machine Showers of Specified Diameter
- Installation of On line Monitoring system
Recent Trends in Indian Pulp & Paper Mills for Improved Environmental Management

- Installation of Chemical recovery System by Agro Based Mills
- Installation of Diffused Aeration System
- Installation of Tertiary Treatment System
- Installation of Fiber Recovery System
Way Forward

Membrane Systems - Treated Effluent ➔ Process Water Quality ➔ ZLD

Ultra filtration ➔ Reverse Osmosis

http://www.cppri.org.in/
Requirements of Indian Paper Industry

- Cost effective and techno-economic alternative treatment options
- Cost effective color and TDS removal technologies
- Solid waste disposal and management or conversion to value added products
- Demonstration of such technologies on pilot/mill scale
Thank You
ありがとうございました